3D Bioplotter Research Papers

Displaying all papers about Gelatin Methacrylate (58 results)

A modular hydrogel bioink containing microsphere-embedded chondrocytes for 3D-printed multiscale composite scaffolds for cartilage repair

iScience 2023 Volume 26, Issue 8, Article 107349,

Articular cartilage tissue engineering is being considered an alternative treatment strategy for promoting cartilage damage repair. Herein, we proposed a modular hydrogel-based bioink containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds integrating the micro and macro environment of the native articular cartilage. Gelatin methacryloyl (GelMA)/alginate microsphere was prepared by a microfluidic approach, and the chondrocytes embedded in the microspheres remained viable after being frozen and resuscitated. The modular hydrogel bioink could be printed via the gel-in-gel 3D bioprinting strategy for fabricating the multiscale hydrogel-based scaffolds. Meanwhile, the cells cultured in the scaffolds showed good proliferation and differentiation. Furthermore, we also found that…

Engineered biomechanical microenvironment of articular chondrocytes based on heterogeneous GelMA hydrogel composites and dynamic mechanical compression

Biomaterials Advances 2023 Volume 153, Article 213567

Tissue-engineered articular cartilage constructs are currently not able to equal native tissues in terms of mechanical and biological properties. A major cause lies in the deficiency in engineering the biomechanical microenvironment (BMME) of articular chondrocytes. In this work, to engineer the BMME of articular chondrocytes, heterogeneous hydrogel structures of gelatin methacrylated (GelMA) containing differential-stiffness domains were first fabricated, and then periodic dynamic mechanical stimulations were applied to the hydrogel structures. The chondrocyte phenotype of ATDC5 cells was enhanced as the spatial differentiation in stiffness was increased in the hydrogel structures and was further strengthened by dynamic mechanical stimulation. It was…

The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs

Acta Biomaterialia 2023 Volume 156, Pages 190-201

Three Dimensional (3D) bioprinting is one of the most recent additive manufacturing technologies and enables the direct incorporation of cells within a highly porous 3D-bioprinted construct. While the field has mainly focused on developing methods for enhancing printing resolution and shape fidelity, little is understood about the biological impact of bioprinting on cells. To address this shortcoming, this study investigated the in vitro and in vivo response of human osteoblasts subsequent to bioprinting using gelatin methacryloyl (GelMA) as the hydrogel precursor. First, bioprinted and two-dimensional (2D) cultured osteoblasts were compared, demonstrating that the 3D microenvironment from bioprinting enhanced bone-related gene…

BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair

International Journal of Polymeric Materials and Polymeric Biomaterials 2023 Volume 72, Issue 9, Pages 702-713

The repair of nasal cartilage lesions and defects is still a difficult problem in nasal surgery, and nasal cartilage tissue engineering will be an effective way to solve this problem. Hydrogel has excellent application potential in tissue engineering. In order to produce a 3D printable scaffold for cartilage regeneration, we prepared gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/bacterial cellulose (BC) composite hydrogel. The composite hydrogel was characterized by swelling, mechanical properties, and printing performance test. Compared with GelMA/HAMA hydrogel, the addition of BC not only significantly enhanced the mechanical properties of the hydrogels, but also improved the printing fidelity. At the…

3D-printed dual drug delivery nanoparticleloaded hydrogels to combat antibiotic-resistant bacteria

International Journal of Bioprinting 2023 Volume 9, Issue 3, Article 683

Implant-associated infections are not easy to diagnose and very difficult to treat, due to the ability of major pathogens, such as Staphylococcus aureus, to develop biofilms and escape the immune response and antibiotic treatment. We, therefore, aimed to develop a 3D-printed dual rifampicin (Rif)- and vancomycin (Van)-loaded polylacticco-glycolic acid (PLGA) nanoparticles (NPs) delivery system based on hydrogels made of gelatin methacrylate (GelMA). The release of Rif and Van from NPs manufactured from different PLGA molecular weights was studied in phosphate-buffered saline for 21 days. Low molecular weight PLGA NPs exhibited the fastest release of Rif and Van within the first…

Chondrocyte spheroid-laden microporous hydrogel-based 3D bioprinting for cartilage regeneration

International Journal of Bioprinting 2023 Article 0161

Three-dimensional (3D) bioprinting has brought new promising strategies for the regeneration of cartilage with specific shapes. In cartilage bioprinting, chondrocyte-laden hydrogels are the most commonly used bioinks. However, the dispersion of cells and the dense texture of the hydrogel in the conventional bioink may limit cell–cell/ cell–extracellular matrix (ECM) interactions, counting against cartilage regeneration and maturation. To address this issue, in this study, we developed a functional bioink for cartilage bioprinting based on chondrocyte spheroids (CSs) and microporous hydrogels, in which CSs as multicellular aggregates can provide extensive cell– cell/cell–ECM interactions to mimic the natural cartilage microenvironment, and microporous hydrogels…

Regional specific tunable meniscus decellularized extracellular matrix (MdECM) reinforced bioink promotes anistropic meniscus regeneration

Chemical Engineering Journal 2023 Volume 473, Article 145209

The healing of meniscus injuries poses a significant challenge, as prolonged failure to heal can lead to osteoarthritis, which presents a therapeutic dilemma in the field of sports medicine. Decellularized extracellular matrix (MdECM) derived from natural meniscus, and the incorporated growth factors have been used for potential fibrochondrocyte induction and meniscus regeneration. However, homogeneous MdECM is difficult to achieve region-specific biomimetic microenvironment for tissue regeneration. In this study, we successfully prepared a region-specific MdECM, which were then mixed with an ultraviolet responsible Gelatin Methacryloyl (GelMA)/hyaluronic acid Methacryloy (HAMA) hydrogel incorporated with bioactive factors, faciliatated a functional region-specific bioink. The 3D…

The 3D bioprinted human induced pluripotent stem cell-derived cardiac model: Toward functional and patient-derived in vitro models for disease modeling and drug screening

Bioprinting 2023 Volume 36, Article e00313

More relevant human tissue models are needed to produce reliable results when studying disease mechanisms of genetic diseases and developing or testing novel drugs in cardiac tissue engineering (TE). Three-dimensional (3D) bioprinting enables physiologically relevant positioning of the cells inside the growth matrix according to the detailed digital design. Here we combined human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) with methacrylated gelatin (GelMA) and collagen I-based bioink and 3D extrusion bioprinted a cardiac in vitro model for disease modeling and drug screening. Bioprinted constructs were characterized for their rheological properties, swelling behavior, degradation, as well as shape fidelity. The…

Bacterial nanocellulose-reinforced gelatin methacryloyl hydrogel enhances biomechanical property and glycosaminoglycan content of 3D-bioprinted cartilage

International Journal of Bioprinting 2023 Volume 9, Issue 1, Article 631

Tissue-engineered ear cartilage scaffold based on three-dimensional (3D) bioprinting technology presents a new strategy for ear reconstruction in individuals with microtia. Natural hydrogel is a promising material due to its excellent biocompatibility and low immunogenicity. However, insufficient mechanical property required for cartilage is one of the major issues pending to be solved. In this study, the gelatin methacryloyl (GelMA) hydrogel reinforced with bacterial nanocellulose (BNC) was developed to enhance the biomechanical properties and printability of the hydrogel. The results revealed that the addition of 0.375% BNC significantly increased the mechanical properties of the hydrogel and promoted cell migration in the…

A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration

Advanced Science 2023 Volume 10, Issue 5, Article 2205041

Poor fiber orientation and mismatched bone–ligament interface fusion have plagued the regeneration of periodontal defects by cell-based scaffolds. A 3D bioprinted biomimetic periodontal module is designed with high architectural integrity using a methacrylate gelatin/decellularized extracellular matrix (GelMA/dECM) cell-laden bioink. The module presents favorable mechanical properties and orientation guidance by high-precision topographical cues and provides a biochemical environment conducive to regulating encapsulated cell behavior. The dECM features robust immunomodulatory activity, reducing the release of proinflammatory factors by M1 macrophages and decreasing local inflammation in Sprague Dawley rats. In a clinically relevant critical-size periodontal defect model, the bioprinted module significantly enhances the…

Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration

Tissue Engineering Part A 2022 Volume 28, Issue 3-4, Pages 161-174

Decellularized extracellular matrix hydrogel (dECM-G) has demonstrated its significant tissue-specificity, high biocompatibility, and versatile utilities in tissue engineering. However, the low mechanical stability and fast degradation are major drawbacks for its application in three-dimensional (3D) printing. Herein, we report a hybrid hydrogel system consisting of dECM-Gs and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity. These premixed hydrogels retained high bioactivity and tissue-specificity due to their containing dECM-Gs. More specifically, it was realized that the hydrogel containing dECM-G derived from porcine peripheral nerves (GelMA/pDNM-G) effectively facilitated neurite growth and Schwann cell migration from two-dimensional cultured…

Defined, Simplified, Scalable, and Clinically Compatible Hydrogel-Based Production of Human Brain Organoids

Organoids 2023 Volume 2, Issue 1, Pages 20-36

Human brain organoids present a new paradigm for modeling human brain organogenesis, providing unprecedented insight to the molecular and cellular processes of brain development and maturation. Other potential applications include in vitro models of disease and tissue trauma, as well as three-dimensional (3D) clinically relevant tissues for pharmaceuticals development and cell or tissue replacement. A key requirement for this emerging technology in both research and medicine is the simple, scalable, and reproducible generation of organoids using reliable, economical, and high-throughput culture platforms. Here we describe such a platform using a defined, clinically compliant, and readily available hydrogel generated from gelatin…

The effect of the synthetic route on the biophysiochemical properties of methacrylated gelatin (GelMA) based hydrogel for development of GelMA-based bioinks for 3D bioprinting applications

Materialia 2022 Volume 25, Article 101542

Gelatin methacrylate (GelMA) is a widely used biomaterial in tissue engineering and regenerative medicine. GelMA is a chemically modified form of gelatin. Researchers have employed various methods to synthesize GelMA, such as the conventional method (Bulcke et al. 2000), the sequential method (Lee et al. 2015), and facile one-pot (Shirahama et al. 2016) methods to achieve GelMA hydrogels with a wide range of degree of functionalization or methacrylation. However, the impact of these different synthesis methods and their reac- tion parameters on GelMA hydrogels and scaffolds remains to be investigated concerning bioink formulation and 3D printing application. In this study,…

Luminescent properties of metal–organic frameworks embedded in methacrylated gelatin for its application in biocompatible 3D printable materials

Journal of Nanoparticle Research 2022 Volume 24, Article 66

In this work, nanoparticles of a luminescent metal–organic framework were embedded in a photopolymerized methacrylated gelatin. Steady-state and time-resolved luminescence spectroscopy was used to explore the drying and the photopolymerization processes, as well as the effect the methacrylated gelatin had on the quantum yield and decay time of the nanoparticles. A drying time of 27.5 min was needed for a 20 µL droplet, and the proposed intensity ratio analysis resulted in a minimum irradiation time of 18.6 min, at a lamp intensity of 2.7 W/m2, for the photopolymerization process to end. The presence of the methacrylated gelatin decreased the quantum yield of the…

3D bioprinting of multilayered scaffolds with spatially differentiated ADMSCs for rotator cuff tendon-to-bone interface regeneration

Applied Materials Today 2022 Volume 27, Article 101510

Regeneration of the gradient structure of the tendon-to-bone interface is still a significant clinical challenge. This study reports a novel therapeutic method combining three-dimensional (3D) bioprinting and melt electrospinning writing techniques to regenerate a functional tendon-to-bone interface. We generated biomimetic multilayered scaffolds with 3D-bioprinted pre-differentiated autologous adipose-derived mesenchymal stem cells (ADMSC), which recapitulated compositional and cellular structures of the interface. The hydrogel-based bioinks offered high cell viability and proliferative capability for rabbit ADMSCs. The hydrogels with pre-differentiated (into tenogenic, chondrogenic, and osteogenic lineages) or undifferentiated rabbit ADMSCs were 3D-bioprinted into zonal-specific constructs to mimic the structure of the tendon-to-bone interface.…

Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering

Biofabrication 2022 Volume 14, Number 2, Article 025015

Osteoarthritis is a highly prevalent rheumatic musculoskeletal disorder that commonly affects many joints. Repetitive joint overloading perpetuates the damage to the affected cartilage, which undermines the structural integrity of the osteochondral unit. Various tissue engineering strategies have been employed to design multiphasic osteochondral scaffolds that recapitulate layer-specific biomechanical properties, but the inability to fully satisfy mechanical demands within the joint has limited their success. Through computational modeling and extrusion-based bioprinting, we attempted to fabricate a biphasic osteochondral scaffold with improved shear properties and a mechanically strong interface. A 3D stationary solid mechanics model was developed to simulate the effect of…

GelMA Hydrogel Reinforced with 3D Printed PEGT/PBT Scaffolds for Supporting Epigenetically-Activated Human Bone Marrow Stromal Cells for Bone Repair

Journal of Functional Biomaterials 2022 Volume 13, Issue 2, Article 14

Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair is limited due to their low mechanical strength. This study aimed to investigate a GelMA hydrogel reinforced with a 3D printed scaffold to support MI192-induced human bone marrow stromal cells (hBMSCs) for bone formation. Cell culture: The GelMA (5 wt%) hydrogel supported the proliferation of MI192-pre-treated hBMSCs. MI192-pre-treated hBMSCs within the GelMA in osteogenic culture significantly increased…

Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma

Bioactive Materials 2022 Volume 18, Pages 459-470

Current in vitro models for osteosarcoma investigation and drug screening, including two-dimensional (2D) cell culture and tumour spheroids (i.e. cancer stem-like cells), lack extracellular matrix (ECM). Therefore, results from traditional models may not reflect real pathological processes in genuine osteosarcoma histological structures. Here, we report a three-dimensional (3D) bioprinted osteosarcoma model (3DBPO) that contains osteosarcoma cells and shrouding ECM analogue in a 3D frame. Photo-crosslinkable bioinks composed of gelatine methacrylamide and hyaluronic acid methacrylate mimicked tumour ECM. We performed multi-omics analysis, including transcriptomics and DNA methylomics, to determine differences between the 3DBPO model and traditional models. Compared with 2D models…

Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix

Bioactive Materials 2022 Volume 16, Pages 66-81

Tissue engineering provides a promising strategy for auricular reconstruction. Although the first international clinical breakthrough of tissue-engineered auricular reconstruction has been realized based on polymer scaffolds, this approach has not been recognized as a clinically available treatment because of its unsatisfactory clinical efficacy. This is mainly since reconstruction constructs easily cause inflammation and deformation. In this study, we present a novel strategy for the development of biological auricle equivalents with precise shapes, low immunogenicity, and excellent mechanics using auricular chondrocytes and a bioactive bioink based on biomimetic microporous methacrylate-modified acellular cartilage matrix (ACMMA) with the assistance of gelatin methacrylate (GelMA),…

Thiol-Rich Multifunctional Macromolecular Crosslinker for Gelatin- Norbornene-Based Bioprinting

Biomacromolecules 2021 Volume 22, Issue 6, Pages 2729-2739

Extrusion-based bioprinting is an emerging and most frequently used technique for the fabrication of cell-laden constructs. A suitable hydrogel-based bioink for cell encapsulation and protection is critical for printability, structural stability, and post-printing cell viability. The thiol–ene chemistry-based gelatin-norbornene (GelNB) hydrogels have drawn much attention as a promising substitution of gelatin methacryloyl (GelMA), owing to the fast and controllable step-growth polymerization mechanism, as well as a significant reduction in reactive oxygen species (ROS) accumulation. Herein, thiolated heparin (HepSH) was synthesized and used as a macromolecular crosslinker for GelNB-based bioprinting, so that GelNB gelation became less sensitive to the thiol/ene ratio.…

Stepwise Cross-Linking of Fibroin and Hyaluronic for 3D Printing Flexible Scaffolds with Tunable Mechanical Properties

ACS Biomaterials Science & Engineering 2021 Volue 7, Issue 3, Pages 916-925

The development of 3D printing techniques has provided a promising platform to study tissue engineering and mechanobiology; however, the pursuit of printability limits the possibility of tailoring scaffolds’ mechanical properties. The brittleness of those scaffolds also hinders potential clinical application. To overcome these drawbacks, a double-network ink composed of only natural biomaterials is developed. A shear-thinning hydrogel made of silk fibroin (SF) and methacrylated hyaluronic acid (MAHA) presents a high mechanical modulus with a low concentration of macromers. The physical cross-linking due to protein folding further increases the strength of the scaffolds. The proposed SF/MAHA scaffold exhibits a storage modulus…

Bioprinting of Chondrocyte Stem Cell Co-Cultures for Auricular Cartilage Regeneration

ACS Omega 2022 Volume 7, Issue 7, Pages 5908–5920

Advances in 3D bioprinting allows not only controlled deposition of cells or cell-laden hydrogels but also flexibility in creating constructs that match the anatomical features of the patient. This is especially the case for reconstructing the pinna (ear), which is a large feature of the face and made from elastic cartilage that primarily relies on diffusion for nutrient transfer. The selection of cell lines for reconstructing this cartilage becomes a crucial step in clinical translation. Chondrocytes and mesenchymal stem cells are both studied extensively in the area of cartilage regeneration as they are capable of producing cartilage in vitro. However,…

Tunable Microgel-Templated Porogel (MTP) Bioink for 3D Bioprinting Applications

Advanced Healthcare Materials 2022 Volume 11, Issue 8, Article 2200027

Micropores are essential for tissue engineering to ensure adequate mass transportation for embedded cells. Despite the considerable progress made by advanced 3D bioprinting technologies, it remains challenging to engineer micropores of 100 µm or smaller in cell-laden constructs. Here, a microgel-templated porogel (MTP) bioink platform is reported to introduce controlled microporosity in 3D bioprinted hydrogels in the presence of living cells. Templated gelatin microgels are fabricated with varied sizes (≈10, ≈45, and ≈100 µm) and mixed with photo-crosslinkable formulations to make composite MTP bioinks. The addition of microgels significantly enhances the shear-thinning and self-healing viscoelastic properties and thus the printability of bioinks…

3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA

Journal of Biomedical Materials Research 2021 Volume 109, Issue 12, Pages 2425-2437

Fabrication of scaffolds using polymers and then cell seeding is a routine protocol of tissue engineering applications. Synthetic polymers have adequate mechanical properties to substitute for some bone tissue, but they are generally hydrophobic and have no specific cell recognition sites, which leads to poor cell affinity and adhesion. Some natural polymers, have high cell affinity but are mechanically weak and do not have the strength required as a bone supporting material. In the present study, 3D printed hybrid scaffolds were fabricated using PCL and GelMA carrying dental pulp stem cells (DPSCs), which is printed in the gaps between the…

Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds

Tissue Engineering Part A 2021 Volume 27, Number 11-12, Pages 665-678

The present study sought to demonstrate the swelling behavior of hydrogel-microcarrier composite constructs to inform their use in controlled release and tissue engineering applications. In this study, gelatin methacrylate (GelMA) and GelMA-gelatin microparticle (GMP) composite constructs were three-dimensionally printed, and their swelling and degradation behavior was evaluated over time and as a function of the degree of crosslinking of included GMPs. GelMA-only constructs and composite constructs loaded with GMPs crosslinked with 10 mM (GMP-10) or 40 mM (GMP-40) glutaraldehyde were swollen in phosphate-buffered saline for up to 28 days to evaluate changes in swelling and polymer loss. In addition, scaffold reswelling capacity…

Patient-Specific Bone Particles Bioprinting for Bone Tissue Engineering

Advanced Healthcare Materials 2020 Volume 9, Issue 23, Article 2001323

Although bioinks with both high printability and shape fidelity while maintaining high cell viability are developed, the biofunctionality of the resulting bioprinted construct is often overlooked. To address this, a methacrylated gelatin (GelMA)-based bioink biofunctionalized with bone particles (BPs) is developed as a personalized treatment strategy for bone regeneration. The bioink consists of incorporating BPs of various sizes (0–500 µm) in GelMA at various concentrations (ranging from 5 to 15% w/v). The printability of the bioink is systematically investigated and it is demonstrated that a 15% w/v BP-loading results in high print quality for 10% and 12.5% GelMA concentrations. Rheological…

Hybrid Printing Using Cellulose Nanocrystals Reinforced GelMA/HAMA Hydrogels for Improved Structural Integration

Advanced Healthcare Materials 2020 Volume 9, Issue 24, Article 2001410

3D printing of soft-tissue like cytocompatible single material constructs with appropriate mechanical properties remains a challenge. Hybrid printing technology provides an attractive alternative as it combines a cell-free ink for providing mechanical support with a bioink for housing embedded cells. Several hybrid printed structures have been developed, utilizing thermoplastic polymers such as polycaprolactone as structural support. These thermoplastics demonstrated limited structural integration with the cell-laden components, and this may compromise the overall performance. In this work, a hybrid printing platform is presented using two distinct hydrogel inks that share the same photo-crosslinking chemistry to enable simple fabrication and seamless structural…

Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration

ACS Omega 2021 Volume 6, Issue 33, Pages 21368–21383

The current study introduces two novel, smart polymer three-dimensional (3D)-printable interpenetrating polymer network (IPN) hydrogel biomaterials with favorable chemical, mechanical, and morphological properties for potential applications in traumatic brain injury (TBI) such as potentially assisting in the restoration of neurological function through closure of the wound deficit and neural tissue regeneration. Additionally, removal of injury matter to allow for the appropriate scaffold grafting may assist in providing a TBI treatment. Furthermore, due to the 3D printability of the IPN biomaterials, complex structures can be designed and fabricated to mimic the native shape and structure of the injury sight, which can…

Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing

Applied Materials Today 2021 Volume 22, Article 100914

3D bioprinting, a paradigm shift in tissue engineering holds a promising perspective for regenerative medicine and disease modelling. 3D scaffolds are fabricated for subsequent cell seeding or incorporated directly to the bioink to create cell-laden 3D constructs. A plethora of factors relating to bioink properties, printing parameters and post print curing play a significant role in the optimisation of the printing process. Although qualitative evaluation of printability has been investigated largely, there is a paucity of studies on quantitative approaches to assess printability. Hence, this study explores machine learning as a novel tool to evaluate printability quantitatively and to fast…

In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering

Acta Biomaterialia 2021 Volume 123, Pages 286-297

Wounds impact millions of patients every year and represent a serious cause of morbidity and mortality worldwide, yet current treatment outcomes are far from ideal. Therapies based on delivery of multiple growth factors offer a promising approach for optimal wound management; however, their high production cost, low stability, and lack of effective delivery system limits their application in the clinic. Platelet lysate is a suitable, abundant and cost-effective source of growth factors that play an important role in the healing cascade. The aim of this current work is to develop an extrusion-based bioink consisting of platelet lysate (PL) and gelatin…

Impact of cell density on the bioprinting of gelatin methacrylate (GelMA) bioinks

Bioprinting 2021 Volume 22, Article e00131

3D printing of cell laden bioinks has the potential to recapitulate the hierarchical and spatial complexity of native tissues. However, the addition of cells can alter physical properties of printable resins, which in turn may impede or induce cellular sedimentation or affect the printability and shape fidelity of the final construct. In this study we investigated these considerations by bioprinting gelatin methacrylate (GelMA) bioinks, loaded with various concentrations of mouse fibroblast cells (L929), using extrusion-based direct-write 3D printing (EDP). The impact of various cellular concentrations on viscosity, and temperature-driven gelation of GelMA was examined with a rheometer. The effect of…

3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation

Journal of Colloid and Interface Science 2020 Volume 574, Pages 162-173

The integration of multiscale micro- and macroenvironment has been demonstrated as a critical role in designing biomimetic scaffolds for peripheral nerve tissue regeneration. While it remains a remarkable challenge for developing a biomimetic multiscale scaffold for enhancing 3D neuronal maturation and outgrowth. Herein, we present a 3D bioprinted multiscale scaffold based on a modular bioink for integrating the 3D micro- and macroenvironment of native nerve tissue. Gelatin methacryloyl (GelMA)/Chitosan Microspheres (GC-MSs) were prepared by a microfluidic approach, and the effect of these microspheres on enhancing neurite outgrowth and elongation of PC12 cells was demonstrated. The 3D multiscale composite scaffolds were…

3D bioprinting dermal-like structures using species-specific ulvan

Biomaterials Science 2021 Volume 9, Pages 2424-2438

3D bioprinting has been increasingly employed in skin tissue engineering for manufacturing living constructs with three-dimensional spatial precision and controlled architecture. There is however, a bottleneck in the tunability of bioinks to address specific biocompatibility challenges, functional traits and printability. Here we report on a traditional gelatin methacryloyl (GelMA) based bioink, tuned by addition of an ulvan type polysaccharide, isolated from a cultivated source of a specific Australian Ulvacean macroalgae (Ul84). Ul84 is a sulfate- and rhamnose-rich polysaccharide, resembling mammalian glycosaminoglycans that are involved in wound healing and tissue matrix structure and function. Printable bioinks were developed by addition of…

Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks

Science Advances 2020 Volume 6, Article eabc5529

A major challenge in three-dimensional (3D) bioprinting is the limited number of bioinks that fulfill the physicochemical requirements of printing while also providing a desirable environment for encapsulated cells. Here, we address this limitation by temporarily stabilizing bioinks with a complementary thermo-reversible gelatin network. This strategy enables the effective printing of biomaterials that would typically not meet printing requirements, with instrument parameters and structural output largely independent of the base biomaterial. This approach is demonstrated across a library of photocrosslinkable bioinks derived from natural and synthetic polymers, including gelatin, hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, heparin, and poly(ethylene glycol).…

Endothelial/Mesenchymal Stem Cell Crosstalk within Bioprinted Cocultures

Tissue Engineering: Part A 2020 Volume: 26 Issue 5-6, Pages 339-349

The development of viable tissue surrogates requires a vascular network that sustains cell metabolism and tissue development. The coculture of endothelial cells (ECs) and mesenchymal stem cells (MSCs), the two key players involved in blood vessel formation, has been heralded in tissue engineering (TE) as one of the most promising approaches for scaffold vascularization. However, MSCs may exert both proangiogenic as well antiangiogenic role. Furthermore, it is unclear which cell type is responsible for the upregulation of angiogenic pathways observed in EC:MSC cocultures. There is disagreement on the proangiogenic action of MSCs, as they have also been shown to negatively…

Mechanical properties of hybrid triphasic scaffolds for osteochondral tissue engineering

Materials Letters 2020 Volume 261, Article 126893

Reproducing the advanced complexity of native tissue by means of the 3D multi-functional construct is a promising tissue engineering approach to osteochondral tissue regeneration. In this study, we present a porous 3D construct composed of three zones responsible for the regeneration of non-calcified cartilage, calcified cartilage and subchondral bone. These three zones of the hybrid were composed of modified biopolymers: (i) alginate (Alg) reinforced by short polylactide (PLA) fibres, (ii) alginate and gelatine methacrylate (GelMA) combined with ß-tricalcium phosphate particles (TCP), (iii) 3D printed polycaprolactone scaffold subsequently modified with the use of an innovative solvent treatment method based on acetone…

Fiber engraving for bioink bioprinting within 3D printed tissue engineering scaffolds

Bioprinting 2020 Volume 18, Article e00076

In this work, we describe a new 3D printing methodology for the fabrication of multimaterial scaffolds involving the combination of thermoplastic extrusion and low temperature extrusion of bioinks. A fiber engraving technique was used to create a groove on the surface of a thermoplastic printed fiber using a commercial 3D printer and a low viscosity bioink was deposited into this groove. In contrast to traditional extrusion bioinks that rely on increased viscosity to prevent lateral spreading, this groove creates a defined space for bioink deposition. By physically constraining bioink spreading, a broader range of viscosities can be used. As proof-of-concept,…

3D hybrid printing platform for auricular cartilage reconstruction

Biomedical Physics & Engineering Express 2020 Volume 6, Number 3, Article 035003

As scaffolds approach dimensions that are of clinical relevance, mechanical integrity and distribution becomes an important factor to the overall success of the implant. Hydrogels often lack the structural integrity and mechanical properties for use in vivo or handling. The inclusion of a structural support during the printing process, referred to as hybrid printing, allows the implant to retain structure and protect cells during maturation without needing to compromise its biological performance. In this study, scaffolds for the purpose of auricular cartilage reconstruction were evaluated via a hybrid printing approach using methacrylated Gelatin (GelMA) and Hyaluronic acid (HAMA) as the…

Development of a Photocrosslinkable Methacrylated Methylcellulose and Gelatin bioink for Cartilage Tissue Regeneration

MACE PGR Conference 2020

Articular cartilage disease can cause pain, mobility issues, and disability. Clinical treatment includes microfracture, subchondral drilling, graft transplantation, and eventually total joint replacement implant. However, these approaches can present specific problems and limitations. Three-dimensional (3D) bioprinted scaffolds utilising hydrogels can provide a suitable 3D biochemical and biophysical environment, thus is a promising strategy for cartilage tissue therapy and regeneration. This study aims to develop a new hydrogel bioink with improved printability, mechanical, and biological properties for cartilage regeneration. A photocrosslinkable methacrylated methylcellulose (MCMA) and gelatin (GelMA) hybrid bioink is evaluated in this preliminary investigation. The results showed that methylcellulose and…

Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication

ACS Applied Materials & Interfaces 2020 Volume 12, Issue 4, Pages 4343-4357

Scaffolds based on bioconjugated hydrogels are attractive for tissue engineering because they can partly mimic human tissue characteristics. For example, they can further increase their bioactivity with cells. However, most of the hydrogels present problems related to their processability, consequently limiting their use in 3D printing to produce tailor-made scaffolds. The goal of this work is to develop bioconjugated hydrogel nanocomposite inks for 3D printed scaffold fabrication through a micro-extrusion process having improved both biocompatibility and processability. The hydrogel is based on a photocrosslinkable alginate bioconjugated with both gelatin and chondroitin sulfate in order to mimic the cartilage extracellular matrix,…

Void‐Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion

Advanced Functional Materials 2020 Volume 30, Issue 1, Article 1908349

Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. Both of these issues are addressed by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer‐by‐layer alongside a matrix bioink to establish void‐free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well‐defined 3D network of interconnected tubular channels. This void‐free 3D printing (VF‐3DP) approach circumvents the traditional concerns of structural collapse, deformation, and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered “unprintable.” By…

Cell Bioprinting: The 3D-Bioplotter™ Case

Materials 2019 Volume 12, Issue 23, Article 4005

The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with…

Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs

Acta Biomaterialia 2019 Volume 91, Pages 173-185

In the present work we have revisited the application of quantitative ultrasound imaging (QUI) to cellular hydrogels, by using the reference phantom method (RPM) in combination with a local attenuation compensation algorithm. The investigated biological samples consisted of cell-laden collagen hydrogels with PC12 neural cells. These cell-laden hydrogels were used to calibrate the integrated backscattering coefficient (IBC) as a function of cell density, which was then used to generate parametric images of local cell density. The image resolution used for QUI and its impact on the relative IBC error was also investigated. Another important contribution of our work was the…

3D Bioprinted Scaffolds Containing Viable Macrophages and Antibiotics Promote Clearance of Staphylococcus aureus Craniotomy-Associated Biofilm Infection

ACS Apllied Materials & Interfaces 2019 Volume 11, Issue 13, Pages 12298-12307

Craniotomy involves the removal of a skull fragment to access the brain, such as during tumor or epilepsy surgery, which is immediately replaced intraoperatively. The infection incidence after craniotomy ranges from 0.8 to 3%, with approximately half caused by Staphylococcus aureus (S. aureus). To mitigate infectious complications following craniotomy, we engineered a three-dimensional (3D) bioprinted bone scaffold to harness the potent antibacterial activity of macrophages (MΦs) together with antibiotics using a mouse S. aureus craniotomy-associated biofilm model that establishes a persistent infection on the bone flap, subcutaneous galea, and brain. The 3D scaffold contained rifampin and daptomycin printed in a…

3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks

Materials Horizons 2019 Volume 6, Pages 733-742

Natural polymer hydrogels are one of the best biomaterials for soft tissue repair because of their excellent biocompatibility, biodegradability and low immune rejection. However, they lack mechanical strength matching that of natural tissue and desired functionality (e.g., self-healing and 3D-printability). To solve these problems, we developed a host–guest supramolecule (HGSM) with three arms covalently crosslinked with a natural polymer to construct a novel hydrogel with non-covalent bonds integrated into a covalently crosslinked network. This unique structure enabled the hydrogel to exhibit improved mechanical properties and show both self-healing and 3D printing capabilities. The three-armed HGSM was first prepared via efficient…

ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation

MHR: Basic science of reproductive medicine 2018 Volume 25, Issue 2, Pages 61–75

STUDY QUESTION Does the upregulation of the zinc finger E-box binding homeobox 2 (ZEB2) transcription factor in human trophoblast cells lead to alterations in gene expression consistent with an epithelial-mesenchymal transition (EMT) and a consequent increase in invasiveness? SUMMARY ANSWER Overexpression of ZEB2 results in an epithelial-mesenchymal shift in gene expression accompanied by a substantial increase in invasive capacity of human trophoblast cells.

Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink

Journal of Biomaterials Applications 2018 Volume 33, Issue 5, Pages 609-618

Gelatin methacryloyl is a promising material in tissue engineering and has been widely studied in three-dimensional bioprinting. Although gelatin methacryloyl possesses excellent biocompatibility and tunable mechanical properties, its poor printability/processability has hindered its further applications. In this study, we report a reversible physical crosslinking strategy for precise deposition of human chondrocyte-laden gelatin methacryloyl bioink at low concentration without any sacrificial material by using extrusive three-dimensional bioprinting. The precise printing temperature was determined by the rheological properties of gelatin methacryloyl with temperature. Ten percent (w/v) gelatin methacryloyl was chosen as the printing formula due to highest biocompatibility in three-dimensional cell cultures…

Trophoblast–endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model

Biotechnology and Bioengineering 2018 Volume 116, Issue 1, Pages 181-192

Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium–trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast–endothelium interactions under dynamic culture. In this study, we developed a dynamic three‐dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations…

A Bioprinted Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair

Advanced Healthcare Materials 2018 Volume 7, Issue 23, Article 1800672

Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D‐bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs,…

Tyrosinase-doped bioink for 3D bioprinting of living skin constructs

Biomedical Materials 2018 Volume 13, Number 3, Article Number 035008

Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper, a novel bioink made of gelatin methacrylamide (GelMA) and collagen (Col) doped with tyrosinase (Ty) is presented for the 3D bioprinting of living skin tissues. Ty has the dual function of being an essential bioactive compound in the skin regeneration process and also as an enzyme to facilitate the crosslink of Col and GelMA. Further, enzyme crosslinking together with photocrosslinking…

Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering

Acta Biomaterialia 2018 Volume 74, Pages 131-142

Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and…

Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function

Acta Biomaterialia 2018 Volume 71, Pages 486-495

Obesity and its related health complications cause billions of dollars in healthcare costs annually in the United States, and there are yet to be safe and long-lasting anti-obesity approaches. Using brown adipose tissue (BAT) is a promising approach, as it uses fats for energy expenditure. However, the effect of the microenvironment on human thermogenic brown adipogenesis and how to generate clinically relevant sized and functioning BAT are still unknown. In our current study, we evaluated the effects of endothelial growth medium exposure on brown adipogenesis of human brown adipose progenitors (BAP). We found that pre-exposing BAP to angiogenic factors promoted…

3D Bioprinting of Breast Cancer Models for Drug Resistance Study

ACS Biomaterials Science & Engineering 2018 Volume 4, Issue 12, Pages 4401-4411

Adipose-derived mesenchymal stem/stromal cells (ADMSC) are one of the major stromal cells in the breast cancer microenvironment that promote cancer progression. Previous studies on the effects of ADMSC on breast cancer metastasis and drug resistance, using two-dimensional (2D) cultures, remained inconclusive. In the present study, we compared cocultured ADMSC and human epidermal receptor 2 positive breast primary breast cancer cells (21PT) in 2D and three-dimensional (3D) cultures and then examined their response to doxorubicin (DOX). We examined 3D bioprinted constructs with breast cancer cells in the middle and ADMSC in the edge region, which were made by using dual hydrogel-based…

Imaging stem cell distribution, growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography

Biotechnology and Bioengineering 2017 Volume 115, Issue 1, Pages 257-265

Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2∼3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration and…

Repair of Tympanic Membrane Perforations with Customized, Bioprinted Ear Grafts Using Chinchilla Models

Tissue Engineering Part A 2017 Volume: 24 Issue 5-6, Pages 527-535

The goal of this work is to develop an innovative method that combines bioprinting and endoscopic imaging to repair tympanic membrane perforations (TMPs). TMPs are a serious health issue because they can lead to both conductive hearing loss and repeated otitis media. TMPs occur in 3 to 5% of cases after ear tube placement as well as in cases of acute otitis media (the second most common infection in pediatrics), chronic otitis media with or without cholesteatoma, or as a result of barotrauma to the ear. About 55,000 tympanoplasties, the surgery performed to reconstruct TMPs, are performed every year and…

Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells

RSC Advances 2017 Volume 7, Pages 29312-29320

Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or hypoxia. We found that short-term hypoxic conditioning promoted vascularization-related gene expression, whereas long-term hypoxia impaired cell viability and vascularization. 3D bioprinted bone constructs composed of polycaprolactone/hydroxyapatite (PCL/HAp) and…

Development of a 3D Printed, Bioengineered Placenta Model to Evaluate the Role of Trophoblast Migration in Preeclampsia

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 10, Pages 1817–1826

Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality. Current research suggests that the impaired trophoblastic invasion of maternal spiral arteries contributes significantly to the development of PE. However, the pathobiology of PE remains poorly understood, and there is a lack of treatment options largely due to ineffective experimental models. Utilizing the capability of bioprinting and shear wave elastography, we developed a 3D, bioengineered placenta model (BPM) to study and quantify cell migration. Through BPM, we evaluated the effect of epidermal growth factor (EGF) on the migratory behavior of trophoblast and human mesenchymal stem cells. Our…

A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels

Advanced Materials 2015 Volume 27, Issue 9, Pages 1607–1614

A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed.